II B.Tech - II Semester – Regular Examinations – MAY 2023

DIGITAL ELECTRONICS DESIGN WITH VHDL (HONORS in ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hoursMax. Marks: 70Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries
14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.			
					Marks			
UNIT-I								
1	a)	Design a binary multiplier using VHDL in	L3	CO1	7 M			
		behavioral model for 4X4 binary multiplier.						
	b)	Design an adder of two numbers using	L3	CO2	7 M			
		VHDL.						
	OR							
2	a)	Explain the following with declaration	L2	CO1	7 M			
		format and an example each.						
		(i) Variable						
		(ii) signal						
		(iii) constant						
	b)	Discuss about predefined unconstrained	L2	CO2	7 M			
		arrays. Explain each with an example.						
·								

		UNIT-II			
3	a)	Using process statement write VHDL code	L2	CO3	7 M
		for 8X1 multiplexer.			
	b)	Explain the terms entity and architecture.	L2	CO3	7 M
	1	OR			
4	a)	Design 8 to 3 encoder and model using	L3	CO3	7 M
		VHDL.			
	b)	Describe the signal assignment statement	L2	CO3	7 M
		with suitable example.			
		UNIT-III			
5	a)	Model mean calculator for four integers	L3	CO3	7 M
		using VHDL function.			
	b)	Using VHDL procedure model full adder	L3	CO3	7 M
		sum and carry.			
		OR			
6	a)	Using VHDL function write a code binary	L2	CO3	7 M
		to integer converter.			
	b)	Using VHDL packages write a code for area	L2	CO3	7 M
		of circle.			
		UNIT-IV			
7	a)	Model using VHDL code for a bit odd	L3	CO3	7 M
		sequence counter if control input X=0 and			
		even sequence counter if control input X=1.			_
	b)	Explain state machine with suitable	L2	CO3	7 M
		example.			
		OR			

8	a)	Design a Decade synchronous counter and	L3	CO3	7 M			
		model using behavioural VHDL modelling.						
	b)	Model D Flip-flop using behavioural VHDL	L3	CO3	7 M			
		modelling.						
UNIT-V								
9	a)	With a neat sketch explain FPGA Xilinx	L2	CO4	7 M			
		4000 series logic cell.						
	b)	Design 2:1 multiplexer using PLA.	L3	CO4	7 M			
OR								
10	a)	(i)Explain FPGA principle and architecture.	L2	CO4	7 M			
		(ii) Explain one-hot state assignment.						
	b)	Design and model half adder using FPGA.	L3	CO4	7 M			